
Let’s Do Lunch
A short programming puzzle to ponder

Peggy Piranha and Samuel Amherst Salmon III (Sam) are old friends looking to
get together for lunch. They haven’t seen each other in ages but are keen on
crossing paths for lunch. But where could they meet? They’re flexible on the
ultimate destination, but there are a few constraints.

Peggy and Sam live in a fairly complicated watershed, with many rivers running
together and splitting apart. Sam has to keep moving upstream for spawning
season. Peggy has dinner plans with a killer whale later in the day and has to
keep moving downstream. Fortunately, we have a map given to us by the Piscine
Post Office, with each junction marked with an address. Each segment of river is
listed as pairs of addresses, from upstream to downstream. Given the map and a
list of possible starting locations for Peggy and Sam, give the list of locations
where they could meet. Oh, and there are a few places they must avoid passing
through, with waterfalls, rapids, and other unpleasantness. Your job is to list the
possible addresses where they could meet, one per line and sorted
alphabetically by address.

Input/Output
Input and output are simple text, via standard input and standard output,
respectively. Input will be provided in the format shown in the example below: the
list of address pairs forming the map, followed by the list of addresses to avoid,
the list of possible starting locations for Peggy, and finally the list of possible
starting locations for Sam.

Sample Input Sample Output Map (for reference)

Map:
a1 b1
a2 b1
a2 b2
a2 b3
b1 c1
b2 c2
b2 c3
b3 c3
Avoid:
b2
Peggy:
a2
Sam:
c2 c3

a2
b3
c3

Guidelines, corner cases, and other details

• Assume that the input is always well-formed - no need to guard against bad
input.

• Address labels are a string which can have any character other than a
space or newline. For example, a1 or ThisIsAnAddress. Don’t think too
hard about it, it’s just a string to uniquely identify the node. Address names
are always unique, the same word always indicating the same location.

• If there are multiple locations to avoid, or multiple starting locations, they will
be listed on a single line separated by spaces, e.g.

 a1 a2 a3

• If there are no locations to avoid, there will be a blank line, e.g.

Avoid:

Peggy:
a1

• Peggy and Sam will each always have at least one possible starting
location.

• The output should be a list of locations, one per line, sorted alphabetically. If
there are no possible meeting locations, there is no output either.

• Do not print anything other than the expected output - no headers, status
messages or anything else (it would interfere with automated testing).

• If a starting location appears in the locations to avoid, the location must be
avoided, and should not be passed through.

• Cycles in the map are possible. It is a complicated watershed, after all.

Submitting an answer
To submit an answer, write a solution in Java and send us the source code. You
may use Java’s standard libraries, e.g. java.util.Set

Evaluation

Once received, we’ll run your solution against our test cases and review your
source code. First and foremost, we look for code which is readable. There is
more than one way to solve this exercise, but the best solutions strike the right
balance between conciseness and clarity. Your choice of algorithm will likely
have more impact than your comments, but do comment where appropriate.

Second, we look for code which is functionally correct. Our best advice is to read
the problem statement carefully, and create a checklist, or even a collection of
unit tests by which you can evaluate your solution. If any part of the specification
is unclear, please ask for clarification.

Third, we look at the performance of the algorithm. Your solution should perform
well on a graph of 100 nodes, fully connected (10,000 edges). The best
algorithms continue to perform well on graphs with 1000 nodes and 1,000,000
edges, yielding an answer in under a minute.

Finally, note that we will compare your submitted code to solutions we have
previously received from other applicants. We do not accept plagiarized
submissions and your application will not be considered if your code overlaps too
heavily with someone else’s code, including solutions which have been posted
on sites such as Github or Stack Exchange.

